Bentukumum sistem persamaan linear tiga variabel (SPLTV) adalah sebagai berikut. Dengan ketentuan, a, b, c β‰  0. Dari ketiga bentuk umum SPLTV tersebut, kamu hanya akan mendapatkan satu solusi/ penyelesaian untuk setiap variabelnya, yaitu ( x, y, z ).

- Penyelesaian Sistem Persamaan Linear Tiga Variabel SPLTV membutuhkan beberapa metode untuk mempermudah dalam menemukan solusi. Metode tersebut di antaranya yaitu determinan dan invers. Simak contoh penyelesaiannya di bawah ini!Soal Tentukan penyelesaian sistem persamaan linear berikut ini dengan metode determinan dan invers matriks. 2x-y+z=33x-2y+z=24x+y-z=3 Langkah pertama untuk menentukan himpunan penyelesaian SPLTV di atas adalah dengan mengubah bentuknya menjadi matriks AX=B. FAUZIYYAH Pendefinisian sistem persamaan linear ke dalam matriks AX=B Baca juga Mendefinisikan Sistem Persamaan Linear Tiga Variabel SPLTV Metode Determinan Pada metode determinan, yang pertama dilakukan adalah mencari determinan dari matriks A D, matriks x Dx, matriks y Dy, dan matriks z Dz. Kemudian hitung himpunan penyelesaiannya dengan membagi masing-masing nilai determinan matriks x,y,z dengan determinan matriks A. Pertama, kita hitung determinan dari matriks A D sebagai berikut FAUZIYYAH Determinan matriks A D Kemudian adalah hitung determinan dari matriks x Dx sebagai berikut FAUZIYYAH Determinan matriks x Dx Baca juga Pertidaksamaan Nilai Mutlak Linear Satu Variabel Selanjutnya menghitung determinan dari matriks y Dy sebagai berikut FAUZIYYAH Determinan matriks y Dy Dan yang terakhir adalah menghitung determinan dari matriks z Dz FAUZIYYAH Determinan matriks z Dz Berdasarkan perhitungan yang telah kita lakukan, diperoleh determinan D bernilai 6, determinan Dx bernilai 6, determinan Dy bernilai 12, dan determinan Dz bernilai 18. Kemudian kita hitung penyelesaian x, y, z sebagai berikut FAUZIYYAH Perhitungan nilai x, y, dan z Baca juga Persamaaan Nilai Mutlak Linear Satu Variabel Sehingga diperoleh bahwa himpunan penyelesaian dari SPLTV dengan menggunakan metode determinan adalah {1,2,3}. Metode Invers Pada metode invers, himpunan penyelesaian dari SPLTV diketahui dengan menentukan determinan dari matriks A, kemudian kofaktor dari matriks A, dan adjoin dari matriks A. Pertama, mencari determinan dari A, yang mana telah kita lakukan pada metode determinan, bahwa determinan matriks A bernilai 6. Kemudian menentukan kofaktor A sebagai berikut FAUZIYYAH Penentuan kofaktor matriks A Baca juga Imbalan Hanya Satu Variabel Pendukung, Tak Otomatis Turunkan Kasus Korupsi Kofaktor A digunakan untuk menentukan adjoin, yaitu transpose dari kofaktor A FAUZIYYAH Penentuan adjoin matriks A Sehingga kita dapat menghitung himpunan penyelesaian sebagai berikut FAUZIYYAH Perhitungan nilai x, y, dan z Pada pernyataan di atas diperoleh bahwa himpunan penyelesaian dari SPLTV dengan menggunakan metode invers adalah {1,2,3}. Baca juga Metode Eliminasi dan Substitusi SPLTV Dapatkan update berita pilihan dan breaking news setiap hari dari Mari bergabung di Grup Telegram " News Update", caranya klik link kemudian join. Anda harus install aplikasi Telegram terlebih dulu di ponsel.

Diketahuisuatu persamaan linear tiga variabel berikut. 2x+ y+z = 12..(1) x +2yβˆ’z = 3.(2) 3xβˆ’ y+z = 11(3) Nilai x dari sistem persamaan di atas adalah Iklan RD R. Diah Master Teacher Mahasiswa/Alumni Universitas Negeri Malang Jawaban terverifikasi Pembahasan Perhatikan penghitungan berikut! – Pada artikel ini aku akan bahas SPLTV atau Sistem Persamaan Linear Tiga Variabel super lengkap mulai dari pengertian, contoh soal, sampai dengan itu sistem persamaan linear tiga variabel?Sistem persamaan linear tiga variabel adalah suatu sistem persamaan linear yang memiliki tiga variabel dan biasanya variabel yang dimaksud disimbolkan dengan huruf x, y, dan bentuk umum sistem persamaan linear tiga variabel adalah sebagai berikut\\color{red}{a_{1}x + b_{1}y + c_{1}z = d_{1}}\\\color{red}{a_{2}x + b_{2}y + c_{2}z = d_{2}}\\\color{red}{a_{3}x + b_{3}y + c_{3}z = d_{3}}\Keterangan\a_{1}, a_{2}, a_{3}\, \b_{1}, b_{2}, b_{3}\, \c_{1}, c_{2}, c_{3}\ merupakan koefisien.\x, y, z\ merupakan variabel.\d_{1}, d_{2}, d_{3}\ merupakan Menyelesaikan SPLTV Sistem Persamaan Linear Tiga VariabelCara menyelesaikan sistem persamaan linear tiga variabel ada beberapa metode, di artikel ini kita akan menggunakan tiga metode yaitu, substitusi, eliminasi, dan gabungan eliminasi dan substitusi.Biar kamu paham, aku akan coba kasih soal dan pembahasan sistem persamaan linear tiga soal berikut!Anwar ingin membeli 4 buku, 3 pensil, dan 2 penghapus dengan membawa uang Berpakah kembalian uang Anwar jika diketahui harga-harga sebagai berikut2 buku, 1 pensil, dan 3 penghapus adalah buku, 1 pensil, dan 2 penghapus adalah buku, 2 pensil, dan 1 penghapus adalah buku adalah \x\, pensil adalah \y\, dan penghapus adalah \z\. Maka model matematika sistem persamaan linear tiga variabelnya adalah sebagai berikut\\begin{cases} 2x + y + 3z &= 23000 \\ x + y + 2z &= 15000 \\ 2x + 2y + z &= 21000 \end{cases}\Untuk memudahkan perhitungan, kita simpan dulu tiga nol dibelakang dan kasih nama \P_{1}\ untuk persamaan satu, \P_{2}\ untuk persamaan dua, dan \P_{3}\ untuk persamaan tiga.\2x + y + 3z = 23\ …\P_{1}\\x + y + 2z = 15\ …\P_{2}\\2x + 2y + z = 21\ …\P_{3}\1. Metode SubstitusiMetode substitusi adalah salah satu metode untuk menyelesaikan sistem persamaan linear tiga variabel. Metode substitusi cara kerjanya dengan mengganti variabel hingga akhirnya mendapatkan nilai dari variabel yang metode substitusi pada sistem persamaan linear tiga variabel aku bagi jadi tiga langkah, berikut ini penjelasan 1Pilih satu persamaan kemudian ubah pernyataannya kedalam bentuk dua variabel lain, setelah itu beri kita ambil \P_{1}\ dan kita nyatakan \y\ dalam bentuk \x\ dan \z\.\2x + y + 3z = 23\\y = 23 – 2x – 3z\ …\P_{4}\Biar gak pusing kita kasih nama \P_{4}\ aja 2Masukan \P_{4}\ kedalam dua persamaan lain, yaitu kedalam \P_{2}\ dan \P_{3}\ setelah itu beri nama persamaan baru yang terbentuk.\P_{4}\ ke \P_{2}\\x + y + 2z = 15\\x + 23 – 2x – 3z + 2z = 15\\x + 23 – 2x – 3z + 2z = 15\\– x – z = 15 – 23\\– x – z = -8\ …\P_{5}\\P_{4}\ ke \P_{3}\\2x + 2y + z = 21\\2x + 223 – 2x – 3z + z = 21\\2x + 46 – 4x – 6z + z = 21\\-2x – 5z = 21-46\\-2x – 5z = -25\ …\P_{6}\Langkah 3Selesaikan dua persamaan baru yang didapat dari langkah 2 menggunakan metode substitusi seperti SPLDV.\– x – z = -8\ …\P_{5}\\-2x – 5z = -25\ …\P_{6}\Dari \P_{5}\ kita dapatkan persamaan baru, yaitu \x = -z + 8\ …\P_{7}\.Masukan \P_{7}\ ke \P_{6}\\-2-z + 8 – 5z = -25\\2z – 16 – 5z = -25\\-3z = -25 + 16\\-3z = -9\\\displaystyle z = \frac{-9}{-3}\\z = 3\Masukan \z = 3\ ke \P_{7}\\x = -z + 8\\x = -3 + 8\\x = 5\Masukan \z = 3\ dan Masukan \x = 5\ ke \P_{4}\.\y = 23 – 2x – 3z\\y = 23 – 25 – 33\\y = 23 – 10 – 9\\y = 4\Jadi \x,y,z = 5,4,3\atauBuku pertanyaan pada soal!Anwar ingin membeli 4 buku, 3 pensil, dan 2 penghapus dengan membawa uang Berpakah kembalian uang Anwar?\\begin{aligned} 4x + 3y + 2z &= 4 5000 + 34000 + 2 3000 \\ &= 4 5000 + 34000 + 2 3000 \\ &= 20000 + 12000 + 6000 \\ &= 38000 \end{aligned}\Uang Anwar = = = soal sistem persamaan linear tiga variabel di atas terjawab juga. Berikutnya kita akan menggunakan cara yang kedua yaitu metode Metode EliminasiMetode elimasi cara kerjanya dengan menghilangkan variabel lain untuk mendapatkan nilai dari variabel yang akan menggunakan contoh soal sistem persamaan linear tiga variabel sebelumnya untuk memahami metode eliminasi ini, kamu akan lihat kalau metode ini juga akan menghasilkan nilai yang gak pusing langsung aja praktek, inilah contoh soal sistem persamaan linear tiga variabel metode soal berikut!\2x + y + 3z = 23\ …\P_{1}\\x + y + 2z = 15\ …\P_{2}\\2x + 2y + z = 21\ …\P_{3}\Langkah 1Tentukan variabel yang akan dieliminasi/dihilangkan, kemudian eliminasi menggunakan dua persamaan yang berbeda. Biasanya \P_{1}\ \P_{2}\, \P_{1}\ \P_{3}\Untuk mengeliminasi suatu variabel maka koefisien dari varibel yang akan di eliminasi pada kedua persamaan tersebut harus sama. Agar lebih mudah, kita akan mengeliminasi \y\ karena koefisiennya udah \P_{1}\ dan \P_{2}\\2x + y + 3z = 23\\\displaystyle \frac{x + y + 2z = 15}{} -\\x + z = 8\ …\P_{4}\Eliminasi \P_{1}\ dan \P_{3}\\2x + y + 3z = 23\\2x + 2y + z = 21\Karena kita akan menghilangkan \y\, maka \P_{1}\ harus dikali 2 agar koefisien \y\ sama dengan \P_{3}\\4x + 2y + 6z = 46\ …\2 P_{1}\\\displaystyle \frac{2x + 2y + z = 21}{} -\\2x + 5z = 25\ …\P_{5}\Langkah 2Eliminasi persamaan \P_{4}\ dan \P_{5}\ untuk mendapatkan nilai dari dua variabel.\x + z = 8\\\displaystyle \frac{2x + 5z = 25}{} -\Jangan lupa, kita samakan dulu koefisiennya. Misalkan kita akan eliminasi variabel \x\, maka kita kalikan \2\ ke persamaan\P_{4}\.\2x + 2z = 16\ …\2P_{4}\\\displaystyle \frac{2x + 5z = 25}{} -\ …\P_{5}\\-3z = -9\\z = 3\Untuk mencari \x\, kita eliminasi variabel \z\. Jangan lupa untuk menyamakan koefisiennya dulu.\5x + 5z = 40\ …\5P_{4}\\\displaystyle \frac{2x + 5z = 25}{} -\ …\P_{5}\\3x = 15\\x = 5\Langkah 3Ulangi langkah 1 dan langkah 2 untuk mencari nilai variabel terakhir, tentunya variabel yang akan di cari jangan di \x\ menggunakan \P_{1}\ dan \P_{2}\\2x + y + 3z = 23\ …\P_{1}\\\displaystyle \frac{2x + 2y + 4z = 30}{} -\ …\2P_{2}\\-y -z = -7\ …\P_{6}\Eliminasi \x\ menggunakan \P_{1}\ dan \P_{3}\\2x + y + 3z = 23\\\displaystyle \frac{2x + 2y + z = 21}{} -\\-y + 2z = 2\ …\P_{7}\Eliminasi \z\ menggunakan \P_{6}\ dan \P_{7}\\-2y -2z = -14\ …\2P_{6}\\\displaystyle \frac{-y + 2z = 2}{} +\ …\P_{7}\\-3y = -12\\y = 4\Jadi \x,y,z = 5,4,3\atauBuku 4x + 3y + 2z &= 4 5000 + 34000 + 2 3000 \\ &= 4 5000 + 34000 + 2 3000 \\ &= 20000 + 12000 + 6000 \\ &= 38000 \end{aligned}\Uang Anwar = = = itulah contoh soal sistem persamaan linear tiga variabel metode eliminasi, gampang banget kan?3. Metode GabunganMetode gabungan adalah metode untuk menyelesaikan sistem persamaan linear tiga variabel dengan menggabungkan metode substiusi dan metode prakteknya bisa aja substitusi dulu kemudian eliminasi atau sebaliknya. Aku sendiri lebih suka eliminasi dulu lalu substitusi.\2x + y + 3z = 23\ …\P_{1}\\x + y + 2z = 15\ …\P_{2}\\2x + 2y + z = 21\ …\P_{3}\Karena kamu udah tau metodenya, jadi aku langsung aja ya ke cara menyelesaikannya. Kita akan gunakan metode eliminasi lalu disambung metode substitusi.\2x + y + 3z = 23\ …\P_{1}\\\displaystyle \frac{x + y + 2z = 15}{} -\ …\P_{2}\\x + z = 8\ …\P_{4}\Terkadang kita juga harus jeli memilih persamaan yang akan digunakan. Langkah paling cepat, kita pilih \P_{2}\ dan \P_{3}\\2x + 2y + 4z = 30\ …\2P_{2}\\\displaystyle \frac{2x + 2y + z = 21}{} -\ …\P_{3}\\3z = 9\\z = 3\Selanjutnya substitusikan \z\ ke \P_{4}\\x + z = 8\\x + 3 = 8\\x = 8-3\\x = 5\Untuk mencari \y\, ambil salah satu persamaan dan nyatakan \y\ dalam bentuk \x\ dan \z\. Misalkan kita ambil \P_{2}\\x + y + 2z = 15\\y = 15 – x – 2z\\y = 15 – 5 – 23\\y = 15 – 5 – 6\\y = 4\Jadi \x,y,z = 5,4,3\atauBuku 4x + 3y + 2z &= 4 5000 + 34000 + 2 3000 \\ &= 4 5000 + 34000 + 2 3000 \\ &= 20000 + 12000 + 6000 \\ &= 38000 \end{aligned}\Uang Anwar = = = Sistem Pesamaan Linear Tiga VariabelAgar kamu lebih paham lagi coba deh kerjain soal-soal dibawah ini!Dengan sering latihan mengerjakan soal, pastinya kamu akan lebih menguasai soal sistem persamaan linear tiga variabel ini dengan Tentukan himpunan penyelesaian sistem persamaan linear tiga variabel berikut!\\begin{cases} 2x + y + 3z &= 12 \\ x + 3y &= -1 \\ \frac{1}{3} z &= 1 \end{cases}\2. Selesaikan sistem persamaan linear tiga variabel berikut!Zahira ingin membeli 4 buah pir, 2 buah apel, dan 3 buah jeruk. Berapa yang harus dibayar Zahira apabila diketahui ketentuan sebagai berikut!3 pir, 2 apel, 1 jeruk harganya pir, 3 apel, 2 jeruk harganya pir, 2 apel, 3 jeruk harganya itulah pembahasan awal sistem persamaan linear tiga variabel. Bagikan tulisan ini agar orang lain mendapatkan manfaatnya juga, ajak temen-temen kamu untuk belajar matematika di Edumatik, karena semuanya gratiiisss..!!
ο»Ώ1 Diketahui x + 3y + 2z = 16, 2x + 4y - 2z = 12, dan x + y + 4z = 20. Tentukan nilai x, y, z! Pembahasan: Substitusi x + y + 4z = 20 x = 20 - y - 4z x + 3y + 2z = 16 (20 - y - 4z) + 3y + 2z = 16 2y - 2z + 20 = 16 2y - 2z = 16 - 20 2y - 2z = -4 y - z = -2 2x + 4y - 2z = 12 2 (20 - y - 4z) + 4y - 2z = 12 40 - 2y - 8z + 4y - 2z = 12

Sistem Persamaan Linear Tiga Variabel- merupakan bentuk perluasan dari sistem persamaan linear dua variabel SPLDV. Yang mana, pada sistem persamaan linear tiga variabel terdiri dari tiga persamaan yang masing-masing persamaan memiliki tiga variabel misal x, y dan z.Dengan begitu, bentuk umum dari Sistem Persamaan Linear Tiga Variabel dalam x, y, dan z dapat dituliskan seperti berikut iniDengan a, b, c, d, e, f, g, h, i, j, k, dan l atau a1, b1, c1, d1, a2, b2, c2, d2, a3, b3, c3, dan d3 adalah bilangan-bilangan e, I, a1, a2, a3 = koefisien dari xb, f, j, b1, b2, b3 = koefisien dari yc, g, k, c1, c2, c3 = koefisien dari zd, h, i, d1, d2, d3 = konstantax, y, z = variabel atau peubahCiri Ciri Sistem Persamaan Linear Tiga Variabel SPLTVHal Hal yang Berhubungan dengan SPLTVSyarat SPLDV Memiliki Satu PenyelesaianCara Penyelesaian SPLDV1. Metode Subtitusi2. Metode Eliminasi3. Metode Gabungan atau CampuranSebuah persamaan disebut sebagai sistem persamaan linear tiga variabel jika persamaan tersebut mempunyai karakteristik seperti berikut iniMemakai relasi tanda sama dengan =Mempunyai tiga variabelKetiga variabel tersebut mempunyai derajat satu berpangkat satuHal Hal yang Berhubungan dengan SPLTVMemuat tiga komponen atau unsur yang selalu berhubungan dengan sistem persamaan linear tiga komponen tersebut yaitu suku, variabel, koefisien dan konstanta. Berikut ini merupakan penjelasan dari masing-masing komponen SPLTV SukuSuku merupakan sebuah bagian dari suatu bentuk aljabar yang terdiri atas variabel, koefisien dan konstanta. Setiap suku dipisahkan dengan menggunakan tanda baca penjumlahan maupun – y + 4z + 7 = 0, maka suku–suku dari persamaan tersebut yaitu 6x , -y, 4z dan VariabelVariabel merupakan peubah atau pengganti dari suatu bilangan yang pada umumnya dilambangkan dengan pemakaian huruf seperti x, y dan mempunyai 2 buah apel, 5 buah mangga dan 6 buah jeruk. Apabila kita tulis dalam bentuk persamaan makaContoh apel = x , mangga = y dan jeruk = z, sehingga persamannya yaitu 2x + 5y + KoefisienKoefisien merupakan sebuah bilangan yang menyatakan banyaknya suatu jumlah variabel yang sejenis. Koefisien disebut juga sebagai bilangan yang terdapat di depan variabel, sebab penulisan dari suatu persamaan koefisien berada di depan mempunyai 2 buah apel, 5 buah mangga dan 6 buah jeruk. Apabila kita tuliskan ke dalam bentuk persamaan makaContoh apel = x , mangga = y dan jeruk = z, sehingga persamannya yaitu 2x + 5y + 6z. Dari persamaan tersebut, maka dapat diketahui bahwa 2, 5 dan 6 merupakan koefisien di mana 2 merupakan koefisien x , 5 merupakan koefisien y serta 6 merupakan koefisien KonstantaKonstanta merupakan sebuah bilangan yang tidak diikuti dengan variabel, sehingga akan mempunyai nilai yang tetap atau konstan untuk berapa pun nilai variabel atau + 5y + 6z + 7 = 0, dari persamaan tersebut konstantanya yaitu 7. Sebab, 7 nilainya tetap dan tidak terpengaruh dengan berapa pun SPLDV Memiliki Satu PenyelesaianSebuah sistem persamaan linier 3 variabel akan tepat mempunyai suatu penyelesaian atau satu himpunan penyelesaian apabila dapat memenuhi syarat atau ketentuan seperti di bawah iniTerdapat lebih dari satu atau ada tiga persamaan linier tiga variabel yang + y + z = 5x + 2y + 3z = 62x + 4y + 5z = 9Persamaan Linier Tiga Variabel yang membentuk Sistem Persamaan Linier Tiga Variabel, bukan merupakan Persamaan Linier Tiga Variabel yang βˆ’ 3y + z = βˆ’52x + z βˆ’ 3y + 5 = 04x – 6y + 2z = βˆ’10Ketiga persamaan di atas adalah sistem persamaan linear tiga variabel yang sama sehingga tidak mempunyai tepat satu himpunan Penyelesaian SPLDVBentuk umum dari sistem persamaan linear tiga variabel bisa kita tuliskan seperti di bawah iniApabila nilai x = x0, y = y0, dan z = z0, ditulis dengan pasangan terurut x0, y0, z0, memenuhi SPLTV di atas, maka haruslah berlaku hubungan sebagai hal yang seperti itu, x0, y0, z0 disebut sebagai penyelesaian sistem persamaan linear tersebut serta himpunan penyelesaiannya ditulis sebagai {x0, y0, z0}.Sebagai contoh, adanya SPLTV seperti di bawah ini2x + y + z = 12x + 2y – z = 33x – y + z = 11SPLTV di atas memiliki penyelesaian 3, 2, 4 dengan himpunan penyelesaiannya yaitu {2, 3, 4}. Untuk membuktikan kebenaran bahwa 3, 2, 4 adalah penyelesaian dari SPLTV tersebut, maka subtitusikanlah nilai dari x = 3, y = 2 dan z = 4 ke dalam persamaan 2x + y + z = 12, x + 2y– z = 3 dan 3x – y + z = 11, sehingga akan kita dapatkan⇔ 23 + 2 + 4 = 6 + 2 + 4 = 12, benar⇔ 3 + 22 – 4 = 3 + 4 – 4 = 3, benar⇔ 33 – 2 + 4 = 9 – 2 + 4 = 11, benarPenyelesaian atau himpunan penyelesaian dari sebuah sistem persamaan linear tiga variabel SPLTV bisa di cari dengan menggunakan beberapa cara atau metode, antara lain dengan menggunakanMetode subtitusiMetode eliminasiMetode gabungan atau campuranMetode determinanMetode invers matriksBerikut akan kami berikan ulasan dari metode subtitusi, eliminasi dan gabungan pada sistem persamaan linear tiga variabel SPLTV 1. Metode SubtitusiBerikut ini merupakan tahapan yang digunakan untuk menyelesaikan SPLTV dengan metode subtitusi, antara lainTahap 1Pilihlah salah satu persamaan yang paling sederhana, lalu nyatakan x sebagai fungsi y dan z, atau y sebagai fungsi x dan z, atau z sebagai fungsi x dan 2Subtitusikan x atau y atau z yang kita dapatkan di tahap pertama ke dalam dua persamaan yang lainnya. Sehingga akan kita peroleh sistem persamaan linear dua variabel SPLDV.Tahap 3Menyelesaikan SPLDV yang ada pada tahap nomor kalian lebih paham mengenai cara penyelesaian SPLTV dengan menggunakan metode subtitusi, berikut kami berikan beberapa contoh soal dan himpunan penyelesaian SPLTV di bawah ini dengan menggunakan metode subtitusix – 2y + z = 63x + y – 2z = 47x – 6y – z = 10JawabLangkan pertama adalah menentukan terlebih dahulu persamaan yang paling sederhana. Dari ketiga persamaan tersebut, persamaan pertama adalah yang paling sederhana. Dari persamaan pertama, nyatakan variabel x sebagai fungsi y dan z seperti berikut iniβ‡’ x – 2y + z = 6β‡’ x = 2y – z + 6Subtitusikan variabel atau peubah x ke dalam persamaan keduaβ‡’ 3x + y – 2z = 4β‡’ 32y – z + 6 + y – 2z = 4β‡’ 6y – 3z + 18 + y – 2z = 4β‡’ 7y – 5z + 18 = 4β‡’ 7y – 5z = 4 – 18β‡’ 7y – 5z = –14 …………… Pers. 1Subtitusikan variabel x ke dalam persamaan ketigaβ‡’ 7x – 6y – z = 10β‡’ 72y – z + 6 – 6y – z = 10β‡’ 14y – 7z + 42 – 6y – z = 10β‡’ 8y – 8z + 42 = 10β‡’ 8y – 8z = 10 – 42β‡’ 8y – 8z = –32β‡’ y – z = –4 ……………… Pers. 2Persamaan 1 dan 2 membentuk SPLDV y serta z7y – 5z = –14y – z = –4Kemudian menyelesaikan SPLDV di atas dengan menggunakan metode subtitusi. Pilih salah satu persamaan yang paling sederhana. Pada hal ini persamaan kedua merupakan persamaan yang paling sederhana. Dari persamaan kedua, maka kita dapatkanβ‡’ y – z = –4β‡’ y = z – 4Subtitusikan peubah y ke dalam persamaan pertamaβ‡’ 7y – 5z = –14β‡’ 7z – 4 – 5z = –14β‡’ 7z – 28 – 5z = –14β‡’ 2z = –14 + 28β‡’ 2z = 14β‡’ z = 14/2β‡’ z = 7Subtitusikan nilai z = 7 ke salah satu SPLDV, sebagai contoh y – z = –4 sehingga akan kita dapatkanβ‡’ y – z = –4β‡’ y – 7 = –4β‡’ y = –4 + 7β‡’ y = 3Lalu, subtitusikan nilai y = 3 dan z = 7 ke salah satu SPLTV, sebagai contoh x – 2y + z = 6 sehingga akan kita dapatkanβ‡’ x – 2y + z = 6β‡’ x – 23 + 7 = 6β‡’ x – 6 + 7 = 6β‡’ x + 1 = 6β‡’ x = 6 – 1β‡’ x = 5Dengan begitu, kita dapatkan x = 5, y = 3 dan z = 7. Sehingga himpunan penyelesaian dari SPLTV soal tersebut yaitu {5, 3, 7}.Supaya memastikan bahwa nilai x, y, dan z yang didapatkan sudah benar, maka kita bisa mengetahuinya dengan cara mensubtitusikan nilai x, y, dan z ke dalam tiga SPLTV di atas. Antara lainPersamaan Iβ‡’ x – 2y + z = 6β‡’ 5 – 23 + 7 = 6β‡’ 5 – 6 + 7 = 6β‡’ 6 = 6 benarPersamaan IIβ‡’ 3x + y – 2z = 4β‡’ 35 + 3 – 27 = 4β‡’ 15 + 3 – 14 = 4β‡’ 4 = 4 benarPersamaan IIIβ‡’ 7x – 6y – z = 10β‡’ 75 – 63 – 7 = 10β‡’ 35 – 18 – 7 = 10β‡’ 10 = 10 benarDari data di atas, maka dapat dipastikan bahwa nilai x, y dan z yang kita dapatkan telah benar serta telah memenuhi sistem persamaan linear tiga variabel yang Metode EliminasiBerikut ini merupakan tahapan yang digunakan untuk menyelesaikan SPLTV dengan metode eliminasi, antara lainTahap 1Pilih bentuk peubah atau variabel yang paling 2Hilangkan atau eliminasi salah satu peubah contohnya x sehingga akan kita dapatkan 3Hilangkan atau eliminasi salah satu peubah SPLDV contohnya y sehingga akan kita dapatkan salah satu 4Eliminasi atau hilangkan peubah lainnya yakni z untuk mendapatkan nilai peubah yang 5Menentukan nilai peubah ketiga yakni x berdasarkan nilai y dan z yang kalian lebih paham mengenai cara penyelesaian SPLTV dengan menggunakan metode eliminasi, berikut kami berikan beberapa contoh soal dan memakai metode eliminasi, tentukan himpunan penyelesaian sistem persamaan linear tiga variabel di bawah inix + 3y + 2z = 162x + 4y – 2z = 12x + y + 4z = 20JawabLangkah awal yang kita lakukan adalah menentukan variabel mana yang akan dieliminasi terlebih mempermudah, kita pilih variabel yang paling ketiga SPLTV di atas, kita ketahui variabel yang paling sederhana yaitu x sehingga kita akan mengeliminasi x terlebih mengeliminasi variabel x, maka kita harus menyamakan koefisien masing-masing x dari ketiga persamaan. Perhatikan ulasan di bawah ini;x + 3y + 2z = 16 β†’ koefisien x = 12x + 4y – 2z = 12 β†’ koefisien x = 2x + y + 4z = 20 β†’ koefisien x = 1Supaya ketiga koefisien x sama, maka akan kita kalikan persamaan pertama dan persamaan III dengan 2 sementara persamaan II kita kalikan 1. Berikut caranya x + 3y + 2z = 16 x2 β†’ 2x + 6y + 4z = 322x + 4y – 2z = 12 x1 β†’ 2x + 4y – 2z = 12 x + y + 4z = 20 x2 β†’ 2x + 2y + 8z = 40Sesudah koefisien x ketiga persamaan telah sama, selanjutnya langsung saja kita kurangkan atau jumlahkan persamaan pertama dengan persamaan kedua dan persamaan kedua dengan persamaan ketiga sedemikian rupa sampai variabel x hilang. Berikut caranyaDari persamaan pertama dan kedua2x + 6y + 4z = 322x + 4y – 2z = 12 __________ – 2y + 6z = 20Dari persamaan kedua dan ketiga2x + 4y – 2z = 122x + 2y + 8z = 40 __________ –2y – 10z = -28Dengan begitu, maka kita dapatkan SPLDV seperti berikut ini2y + 6z = 202y – 10z = –28Langkah berikutnya yaitu menyelesaikan SPLDV di atas dengan menggunakan metode pertama adalah menentukan nilai y dengan mengeliminasi bisa mengeliminasi variabel z, maka kita harus menyamakan koefisien dari z kedua persamaan tersebut. Perhatikan ulasan di bawah + 6z = 20 β†’ koefisien z = 62y – 10z = –28 β†’ koefisien z = –10Supaya kedua koefisien z sama, maka persamaan pertama akan kita kalian dengan 5 sementara untuk persamaan kedua kita kali dengan itu, kedua persamaan tersebut kita jumlahkan. Berikut caranya2y + 6z = 20 Γ—5 β†’ 10y + 30z = 1002y – 10z = -28 Γ—3 β†’ 6y – 30z = -84 ___________ + 16y = 16 y = 1Kedua, kita mencari nilai z dengan cara mengeliminasi y. Untuk bisa menghilangkan variabel y, maka kita harus menyamakan koefisien y dari kedua persamaan koefisien y kedua persamaan telah sama, maka kita dapat langsung mengurangkan kedua persamaan tersebut. Berikut caranya2y + 6z = 202y – 10z = -28 __________ _ 16z = 48 z = 3Hingga di tahap ini maka kita telah mendapatkan nilai y = 1 dan z = yang terakhir, untuk memperoleh nilai x, kita subtitusikan nilai y dan z tersebut ke dalam salah satu SPLTV. Sebagai contoh persamaan x + y + 4z = 20 sehingga akan kita dapatkanβ‡’ x + y + 4z = 20β‡’ x + 1 + 43 = 20β‡’ x + 1 + 12 = 20β‡’ x + 13 = 20β‡’ x = 20 – 13β‡’ x = 7Dengan begitu, akan kita dapatkan nilai x = 7, y = 1 dan z = 3 sehingga himpunan penyelesaian dari SPLTV di atas yaitu {7, 1, 3}.3. Metode Gabungan atau CampuranPenyelesaian untuk sistem persamaan linear dengan memakai metode gabungan atau campuran adalah cara penyelesaian dengan cara menggabungkan dua metode yang dimaksud adalah metode eliminasi dan metode subtitusi. Metode ini dapat digunakan dengan menggunakan metode subtitusi terlebih dahulu atau dengan eliminasi terlebih kali ini, kita akan mencoba metode gabungan atau campuran dengan 2 teknik yakniMengeliminasi terlebih dahulu baru selanjutnya memakai metode terlebih dahulu baru lalu memakai metode hampir sama seperti yang terdapat pada penyelesaian SPLTV dengan metode eliminasi dan metode subtitusi. Agar kalian lebih paham mengenai cara penyelesaian SPLTV dengan menggunakan gabungan atau campuran ini, berikut kami berikan beberapa contoh soal dan himpunan penyelesaian dari sistem persamaan linear tiga variabel di bawah ini dengan memakai metode + 3y + 2z = 162x + 4y – 2z = 12x + y + 4z = 20JawabMetode Subtitusi SPLTVLangkah pertama menentukan persamaan yang paling sederhana. Dari ketiga persamaan di atas, dapat kita ketahui bahwa persamaan ketiga merupakan persamaan yang paling persamaan ketiga, nyatakan variabel z sebagai fungsi y dan z seperti berikut iniβ‡’ x + y + 4z = 20β‡’ x = 20 – y – 4z ………… Pers. 1Lalu, subtitusikan persamaan 1 di atas ke dalam SPLTV yang pertama.β‡’ x + 3y + 2z = 16β‡’ 20 – y – 4z + 3y + 2z = 16β‡’ 2y – 2z + 20 = 16β‡’ 2y – 2z = 16 – 20β‡’ 2y – 2z = –4β‡’ y – z = –2 …………. Pers. 2Kemudian, subtitusikan persamaan 1 di atas ke dalam SPLTV yang kedua.β‡’ 2x + 4y – 2z = 12β‡’ 220 – y – 4z + 4y – 2z = 12β‡’ 40 – 2y – 8z + 4y – 2z = 12β‡’ 2y – 10z + 40 = 12β‡’ 2y – 10z = 12 – 40β‡’ 2y – 10z = –28 ………… Pers. 3Dari persamaan 2 serta persamaan 3 kita dapatkan SPLDV y dan z seperti berikut iniy – z = –22y – 10z = –28 Metode Eliminasi SPLDVUntuk mengeliminasi atau menghilangkan y, maka kalikan SPLDV yang pertama dengan 2 supaya koefisien y kedua persamaan kita selisihkan kedua persamaan sehingga akan kita dapatkan nilai z seperti berikut iniy – z = -2 Γ—2 β†’ 2y – 2z = -42y – 10z = -28 Γ—1 β†’ 2y – 10z = -28 __________ – 8z = 24 z = 3Untuk menghilangkan z, maka kalikan SPLDV yang pertama dengan 10 supaya koefisien z pada kedua persamaan kita kurangkan kedua persamaan sehingga akan kita dapatkan nilai y seperti berikut iniy – z = -2 Γ—10 β†’ 10y – 10z = -202y – 10z = -28 Γ—1 β†’ 2y – 10z = -28 __________ – 8y = 8 z = 1Hingga tahap ini, kita dapatkan nilai y = 1 dan z = yang terakhir yakni menentukan nilai x. Cara untuk menentukan nilai x yaitu dengan cara memasukkan nilai y dan z tersebut ke dalam salah satu SPLTV. Sebagai contoh x + 3y + 2z = 16 sehingga akan kita dapatkanβ‡’ x + 3y + 2z = 16β‡’ x + 31 + 23 = 16β‡’ x + 3 + 6 = 16β‡’ x + 9 = 16β‡’ x = 16 – 9β‡’ x = 7Dengan begitu, maka kita dapatkan nilai x = 7, y = 1 dan z = 3 sehingga himpunan penyelesaian SPLTV dari soal di atas yaitu {7, 1, 3}.Demikianlah ulasan singkat terkait Sistem Persamaan Linear Tiga Variabel SPLTV yang dapat kami sampaikan. Semoga ulasan di atas dapat kalian jadikan sebagai bahan belajar kalian.

1pt Jika x, y, dan z penyelesaian dari SPLTV x+3y+z=0 x+3y+z = 0 2x-y+z=5 2xβˆ’y+z = 5 3x-3y+2z=10 3xβˆ’3y+2z =10 maka nilai dari x . y . z = . - 4 - 3 - 2 2 4 Multiple Choice 30 seconds

PembahasanDiketahui sistem persamaan linear tiga variabel x+3y-2z=a....1 2x-3y+4z=b....2 3x-4y+8z=c....3 Nilai 3x-2y+5z=18 . Untuk mencari nilai a+b+c, maka jumlahkan ketiga persamaan tersebut. sehingga diperoleh Dengan demikian, nilai a + b + c = 36 .Diketahui sistem persamaan linear tiga variabel Nilai . Untuk mencari nilai a+b+c, maka jumlahkan ketiga persamaan tersebut. sehingga diperoleh Dengan demikian, nilai .

. 266 204 465 401 8 360 69 1

diketahui sistem persamaan linear tiga variabel berikut